A DECOMPOSITION FOR COMPLETE NORMED ABELIAN GROUPS WITH APPLICATIONS TO SPACES OF ADDITIVE SET FUNCTIONS

BY RICHARD B. DARST

1. Introduction. The purpose of this paper is twofold. Our principal objective is to present a Lebesgue type decomposition Theorem (Theorem 2.3) for a generalized complete normed abelian group G, where generalized means (1) that the norm (||x||) of the nonzero elements x of G may be infinite (i.e. if $x \in G$ and $x \neq 0$, then $0 < ||x|| \leq \infty$) and (2) that only the subgroup of bounded elements x (i.e. $[x; ||x|| < \infty]$) is required to be complete. In §3, we apply this decomposition theorem to the space of finitely additive set functions on an algebra S of subsets of a set X in order to generalize the Lebesgue decomposition for bounded and finitely set functions on S (cf. [2]).

The basic form of our decomposition depends on what we call an admissible algebra T of endomorphisms on G (Definition 2.3). It will be seen that T is a Boolean algebra of projection operators with a condition on the manner in which projection on disjoint subgroups effects the norm. It is this latter condition which will provide our principal analytic tool.

Throughout this paper, G will denote a generalized complete normed abelian group.

2. Decompositions and examples. We shall develop the notion of an admissible algebra T of endomorphisms on G in two stages: the first algebraic and the second analytic.

DEFINITION 2.1. A set T of endomorphisms on G is said to be an algebra of endomorphisms on G if whenever each of a and b is an element of T, then

- (1) $ab = ba \in T$ where ab(x) = a(b(x)) for $x \in G$,
- (2) aa = a, and
- (3) $a' = e a \in T$ where e(x) = x for $x \in G$.

Moreover, for each element a of T we let $P(a) = [x \in G; a(x) = x]$.

We shall see that the mapping $a \rightarrow P(a)$ is an isomorphism of T onto a Boolean algebra of subgroups of G. We have, from (2), that $||a|| = ||a^n|| \le ||a||^n$ and, hence, if $a \ne 0$ then $||a|| \ge 1$ (||a|| may be infinite). Moreover, T has the following properties:

- (i) $0 \in T \ (aa' = 0)$,
- (ii) $e \in T$ (e = 0'), and
- (iii) $a + b ab = (a'b')' \in T$ [note that a'b'(a + b ab) = 0 and a'b' + (a+b-ab) = a'b' + (ab+ab') + b ab = (a'b'+ab') + b = b' + b = e].

Presented to the Society, April 14, 1961 under the title A Lebesgue decomposition for complete normed abelian groups; received by the editors July 17, 1961.

DEFINITION 2.2. If T is an algebra of endomorphisms on G and each of a and b is an element of T, then $a \le b$ means ab = a.

THEOREM 2.1. If each of a and b is an element of an algebra T of endomorphisms on G, then

- (i) $0 \le a \le e$,
- (ii) $a \le b \Leftrightarrow a = ab \Leftrightarrow ab' = 0 \Leftrightarrow b' = a'b' \Leftrightarrow a' \ge b' \Leftrightarrow b = a + a'b \Leftrightarrow there exists an element c of T such that <math>a = bc$,
 - (iii) $ab = 0 \Leftrightarrow a = ab' \Leftrightarrow a \leq b'$,
 - (iv) if ab=0, $c \le a$, and $d \le b$, then cd=0,
 - (v) $a \cap b = ab$ where $a \cap b = \sup [c \in T; c \le a, c \le b]$,
 - (vi) $a \cup b = a + b ab$ where $a \cup b = \inf[c \in T; c \ge a, c \ge b]$,
 - (vii) $a \leq b \Leftrightarrow P(a) \subset P(b)$,
 - (viii) if $a \leq b$, then $P(b) = P(a) \oplus P(a'b)$, and
 - (ix) $P(ab) = P(a) \cap P(b)$.

Proof. Parts (i), (ii), (iii), (iv), (v), and (vi) follow readily from our definitions. (vii) If $a \le b$, then b'a = ab' = 0 and, hence, if ax = x, then b'(x) = b'a(x) = 0. (viii) It follows from (vii) that $P(a) \oplus P(a'b) \subset P(b)$. Suppose $x \in P(b)$. Then x = b(x) = (a + a'b)(x) = ax + a'b(x); however, $a(x) \in P(a)(aa = a)$ and $a'b(x) \in P(a'b)$. Thus, $x \in P(a) \oplus P(a'b)$. (ix) We have, by (vii), that $P(ab) \subset P(a) \cap P(b)$. Suppose $x \in P(a) \cap P(b)$. Then ab(x) = a(b(x)) = a(x) = x and, hence, $x \in P(ab)$.

We shall now introduce our analytic tool which we shall denote by Property A.

DEFINITION 2.3. If T is an algebra of endomorphisms on G, then T is said to be an admissible algebra of endomorphisms on G, if T has Property A: If $x \in G$, $||x|| < \infty$, and $\delta > 0$, then there exists $\epsilon > 0$ such that if each of a and b is an element of T and $||a'b(x)|| > \delta$, then $||(a+a'b)(x)|| > ||a(x)|| + \epsilon$.

REMARK. We note that Property A is a condition only on the bounded elements of G. At the end of this section, we shall give examples to show (1) that ϵ may depend only on δ (Example 2.2 with Q=1), (2) that ϵ may depend on δ and ||x|| but not on x (Example 2.2 with Q>1), and (3) that ϵ may depend not only on δ and ||x|| but also on x (Example 2.4).

Henceforth T shall denote an admissible algebra of endomorphisms on G.

THEOREM 2.2. Suppose each of a and b is an element of T, then $a \le b$ if and only if $||a(x)|| \le ||b(x)||$ for all $x \in G$.

Proof. If $a \le b$, then b = a + a'b and, hence, if $x \in G$, then $||b(x)|| = ||(a+a'b)(x)|| \ge ||a(x)||$; in fact, inequality holds unless ||a'b(x)|| = 0. If $a \le b$, then $ab' \ne 0$ and, hence, there exists an element x of G such that $||ab'(x)|| \ne 0$. Thus, $a(ab'(x)) = ab'(x) \ne 0$ while b(ab'(x)) = 0.

COROLLARY 2.2.1. If a is an element of T and $a \neq 0$, then ||a|| = 1.

Proof. We have remarked earlier that $||a|| = ||a^n|| \le ||a||^n$ and, hence, $||a|| \ge 1$. By Theorem 2.2, we have that $||a|| \le ||e|| = 1$. Thus, ||a|| = 1.

REMARK. Later we shall give an example (Example 2.1) to show that the condition: $a \le b$ if and only if $||a(x)|| \le ||b(x)||$ for each $x \in G$ is not sufficient to insure a decomposition. Property A is equivalent to: if $x \in G$, $||x|| < \infty$, and $\delta > 0$, then there exists $\epsilon > 0$ such that if each of a and b is an element of T, ab = 0, and $||b(x)|| > \delta$, then $||(a+b)(x)|| > ||a(x)|| + \epsilon$.

LEMMA 2.3.1. If $x \in G$, $\{a_i\} \downarrow in T$, and $\lim_i ||a_i(x)|| < \infty$, then $\lim_i a_i(x)$ exists.

Proof. Let $L=\lim_i \|a_i(x)\|$ and let $\delta>0$. There exists a positive integer k such that $\|a_k(x)\| < \infty$. There exists $\epsilon>0$ such that if each of c and d is an element of T and $\|c'da_k(x)\| > \delta$, then $\|(c+c'd)a_k(x)\| > \|ca_k(x)\| + \epsilon$. There exists a positive integer i such that $i \ge k$ and $\|a_i(x)\| < L + \epsilon$. If j > i, then $a_i = a_j + a_j' a_i$. Thus, $\|a_i(x)\| = \|a_j + a_j' a_i(x)\| < L + \epsilon \le \|a_j(x)\| + \epsilon$ and, hence, $\|a_i(x) - a_j(x)\| = \|a_j' a_i(x)\| \le \delta$.

DEFINITION 2.4. If each of x and y is an element of G and t>0, then

- (1) $Q(t, x) = [a \in T; ||a(x)|| < t]$, and
- (2) $r(t, x, y) = \sup [||a(y)||; a \in Q(t, x)].$

LEMMA 2.3.2. Suppose each of x and y is an element of G, $||y|| < \infty$, r(t) = r(t, x, y), $r = \lim_{t\to 0+} r(t) < \infty$, and $\epsilon > 0$. Then there exists a sequence $\{b_i\} \downarrow$ in T such that

- (1) $\lim_{i} b_{i}(x) = 0$,
- (2) $\lim_{i} ||b_{i}(y)|| > r \epsilon$, and
- (3) $\lim_{i} b_{i}(y)$ exists.

Proof. If r=0, it is sufficient to let $b_i=0$ for $i \ge 1$. Suppose r>0 and m is a positive integer such that $2^{-m} < \epsilon$. Let $t_1=1$. There exists $\epsilon_1>0$ such that

- (1) $\epsilon_1 < 2^{-(m+1)}$ and
- (2) if $a, b \in T$ and $||a'b(y)|| > 2^{-(m+1)}$, then $||(a+a'b)(y)|| > ||a(y)|| + \epsilon_1$. There exists $a_1 \in Q(t_1, x)$ such that $r(t_1) ||a_1(y)|| < \epsilon_1$. Let $t_2 = 2^{-1}(t_1 ||a_1(x)||)$. If $a \in Q(t_2, x)$, then $||(a_1 + a_1'a)(x)|| \le ||a_1(x)|| + ||a(x)|| < t_1$ and, hence, $||(a_1 + a_1'a)(y)|| \le r(t_1) < ||a_1(y)|| + \epsilon_1$. Thus, $||a_1'a(y)|| \le 2^{-(m+1)}$. There exists $\epsilon_2 > 0$ such that if $||a'b(y)|| > 2^{-(m+2)}$, then $||(a+a'b)(y)|| > ||a(y)|| + \epsilon_2$. There exists $a_2 \in Q(t_2, x)$ such that $r(t_2) < ||a_2(y)|| + \epsilon_2$. If we repeat the preceding process inductively, we obtain a sequence $\{a_i\}$ of elements of T, a sequence $\{e_i\}$ of positive numbers, and a sequence $\{t_i\}$ of positive numbers such that
 - (1) $t_1 = 1$ and $t_{i+1} = 2^{-1}(t_i ||a_i(x)||)$ for i > 1,
 - (2) $0 < \epsilon_i < 2^{-(m+i)}$,
 - (3) if $a, b \in T$ and $||a'b(y)|| > 2^{-(m+i)}$, then $||(a+a'b)(y)|| > ||a(y)|| + \epsilon_i$,
 - (4) $a_i \in Q(t_i, x)$,
 - (5) $r(t_i) < ||a_i(y)|| + \epsilon_i$, and

(6) if $a \in Q(t_{i+1}, x)$, then $(a_i + a_i' a) \in Q(t_i, x)$ which implies $||(a_i + a_i' a)(y)|| \le r(t_i) < ||a_i(y)|| + \epsilon_i$ and hence, $||a_i' a(y)|| \le 2^{-(m+i)}$.

For each positive integer i, $a_i = a_i a'_{i-1} + a_i a_{i-1} a'_{i-2} + \cdots + \prod_{j \le i} a_j$. Let $b_i = \prod_{j \le i} a_j$. Then $\{b_i\} \downarrow$ in T. Moreover,

(1)
$$||b_i(x)|| \le ||a_i(x)|| \le 2^{-(i-1)},$$

 $||(a_i - b_i)(y)|| \le ||a_i a'_{i-1}(y)|| + ||a_i a_{i-1} a'_{i-2}(y)||$

$$(2) + \cdots + \left\| \left(\prod_{1 < j \leq i} a_j \right) a_1'(y) \right\| \leq \sum_{j < i} 2^{-(m+j)}, \text{ and}$$

(3)
$$r(t_i) - ||b_i(y)|| \le r(t_i) - ||a_i(y)|| + ||(a_i - b_i)(y)||$$

$$< \epsilon_i + \sum_{j < i} 2^{-(m+j)} < 2^{-(m+i)} + \sum_{j < i} 2^{-(m+j)} < 2^{-(m)} < \epsilon.$$

Hence, $\lim_{i} ||b_{i}(y)|| \ge r - \epsilon$. However, $\lim_{i} b_{i}(y) \le \lim_{i} r(t_{i}) < \infty$ which implies (Lemma 2.3.1) that $\lim_{i} b_{i}$ exists.

DEFINITION 2.5. If each of x and y is an element of G, then y is said to be

- (1) absolutely continuous with respect to $x \pmod{T}$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that if a is an element of T and $||a(x)|| < \delta$, then $||a(y)|| < \epsilon$, and
- (2) singular with respect to $x \pmod{T}$ if for each $\epsilon > 0$, there exists an element a of T such that $||a(x)|| < \epsilon$ and $||a'(y)|| < \epsilon$. Moreover, we denote by $G_a(x, T)$ the set of elements h of G which are absolutely continuous with respect to $x \pmod{T}$ and we denote by $G_a(x, T)$ the set of elements u of G which are singular with respect to $x \pmod{T}$.

LEMMA 2.3.3. If $x \in G$, then each of $G_a(x, T)$ and $G_s(x, T)$ is a subgroup of G and $G_a(x, T) \cap G_s(x, T) = 0$. Moreover, if $h \in G_a(x, T)$, then $G_s(h, T) \supset G_s(x, T)$.

Proof. Suppose each of y and z is an element of $G_a(x, T)$ and $\epsilon > 0$, then there exists $\delta > 0$ such that if $a \in T$ and $||a(x)|| < \delta$, then each of ||a(y)|| and $||a(z)|| < \epsilon/2$ and, hence, $||a(y+z)|| < \epsilon$. Thus, $G_a(x, T)$ is an algebraic subgroup of G. Suppose $\{y_i\}$ is a sequence of elements of $G_a(x, T)$, $\lim_i y_i = y$, and $\epsilon > 0$. Then there exists a positive integer i such that $||y_i - y|| < \epsilon/2$ and there exists $\delta > 0$ such that if $a \in T$ and $||a(x)|| < \delta$, then $||a(y_i)|| < \epsilon/2$ and, hence, $||a(y)|| \le ||a(y_i)|| + ||a(y-y_i)|| \le ||a(y_i)|| + ||y-y_i|| < \epsilon$. Thus, $y \in G_a(x, T)$. Suppose each of y and z is an element of $G_{\epsilon}(x, T)$ and $\epsilon > 0$, then there exists a and $b \in T$ such that $||a(x)|| < \epsilon/2$, $||b(x)|| < \epsilon/2$, $||a'(y)|| < \epsilon/2$ and $||b'(z)|| < \epsilon/2$ and, hence, $||(a+b-ab)(x)|| \le ||a(x)|| + ||(b-ab)(x)|| \le ||a(x)|| + ||b(x)|| < \epsilon$ and $||(a+b-ab)'(y+z)|| = ||a'b'(y+z)|| \le ||a'(y)|| + ||b'(z)|| < \epsilon$. Suppose $\{y_i\}$ is a sequence of elements of $G_{\epsilon}(x, T)$, $\lim_{i} y_{i} = y$, and $\epsilon > 0$. Then there exists a positive integer i such that $||y_i-y|| < \epsilon/2$ and there exists $a \in T$ such that $||a(x)|| < \epsilon/2$ and $||a'(y_i)|| < \epsilon/2$ and, hence, $||a'(y)|| \le ||a'(y_i)|| + ||a'(y - y_i)||$ $<\epsilon$. Therefore, $G_{\bullet}(x, T)$ is a subgroup of G. Suppose $h \in G_{a}(x, T)$, $s \in G_{\bullet}(x, T)$, and $\epsilon > 0$. Then there exists $\delta > 0$ such that if $a \in T$ and $||a(x)|| < \delta$, then $||a(h)|| < \epsilon$ and, since $s \in G_s(x, T)$, there exists $a \in T$ such that $||a(x)|| < \min[\epsilon, \delta]$ and $||a'(s)|| < \min[\epsilon, \delta]$. Thus, $||a(h)|| < \epsilon$ and $||a'(s)|| < \epsilon$. Hence, $s \in G_s(h, T)$.

REMARK. We shall give two examples (Examples 3.1 and 3.2) to show that, in general, one can not assert that G is the direct sum of $G_a(x, T)$ and $G_s(x, T)$; however, Theorem 2.3 shows that $[y \in G; ||y|| < \infty] \subset G_a(x, T) \oplus G_s(x, T)$ for each $x \in G$.

LEMMA 2.3.4. If each of x and y is a nonzero element of G, each of ||x|| and ||y|| is finite, and y is singular with respect to x, then $||x+y|| > \max[||x||, ||y||]$.

Proof. Since the relation of being singular is symmetric, it is sufficient to show that ||x+y|| > ||x||. There exists a sequence $\{a_i\}$ of elements of T such that $a_ix \to x$ and $a_i'(y) \to y$. There exists $\epsilon > 0$ such that if $a \in T$ and ||a'(x+y)|| > ||y||/2, then $||x+y|| = ||a(x+y) + a'(x+y)|| > ||a(x+y)|| + \epsilon$. Thus, since $a_i(x+y) \to x$ and $||a_i'(x+y)|| \to y$, $||x+y|| = \lim_i ||a_i(x+y) + a_i'(x+y)|| \ge ||x|| + \epsilon$.

LEMMA 2.3.5. Suppose each of x and y is an element of G, $\{a_i\} \downarrow in T$, $z = \lim_i a_i(y)$, $r = \lim_{t\to 0+} r(t, x, y)$, and $\lim_i a_i(x) = 0$. Then $||z|| \le r$.

Proof. It is sufficient to suppose $r < \infty$. If $\epsilon > 0$, then there exists t > 0 such that if $a \in T$ and ||a(x)|| < t, then $||a(y)|| < r + \epsilon/2$ and there exists a positive integer i such that $||a_i(x)|| < t$ and $||a_i(y) - z|| < \epsilon/2$. Thus, $||z|| \le ||z - a_i(y)|| + ||a_i(y)|| < r + \epsilon$.

THEOREM 2.3. Suppose each of x and y is an element of G and $||y|| < \infty$. Then there exists uniquely an element h of G and an element s of G such that

- (1) y = h + s,
- (2) h is absolutely continuous with respect to $x \pmod{T}$, and
- (3) s is singular with respect to $x \pmod{T}$.

Proof. Uniqueness follows from Lemma 2.3.3; the problem is to show existence. Let $r = \lim_{t \to 0+} r(t, x, y)$. If r = 0, let h = y and s = 0 ($y \in G_a(x, T)$ if and only if r = 0). Suppose r > 0. For each positive integer i, there exists $\epsilon_i > 0$ such that if each of a and b is an element of T and $||a'b(y)|| > 2^{-i}$, then $||(a+a'b)(y)|| > ||a(y)|| + \epsilon_i$. There exists (Lemma 2.3.2) a sequence $\{a(1,i)\} \downarrow$ in T and an element z_1 of G such that (1) $\lim_i a(1,i)(x) = 0$, (2) $z_1 = \lim_i a(1,i)(y)$, and (3) $r - ||z_1|| < \epsilon_1$. Let $y_1 = \lim_i a(1,i)'(y) = y - z_1$ and let $r_1 = \lim_{t \to 0+} r(t,x,y_1)$. We assert that $r_1 \le 2^{-1}$. Suppose, on the contrary, that $r_1 > 2^{-1}$. Then there exists a sequence $\{b_i\} \downarrow$ in T and an element w of G such that (1) $\lim_i b_i(x) = 0$, (2) $w = \lim_i b_i(y_1)$ and (3) $||w|| > 2^{-1}$ (Lemma 2.3.2 again). However, $\lim_i ||b_i(y_1)|| = \lim_i ||b_i(x_1, i)'(y)||$ and, hence,

$$||z_1 + w|| = \lim_{t} ||a(1, i)(y) + a(1, i)'b_i(y)|| \ge \lim_{t} ||a(1, i)(y)|| + \epsilon_1$$
$$= ||z_1|| + \epsilon_1 > r;$$

but,

$$\lim_{i} \|(a(1, i) + a(1, i)'b_i)(x)\| \le \lim_{i} \|a(1, i)(x)\| + \|b_i(x)\| = 0.$$

This contradicts the supposition that $r_1 > 2^{-1}$. There exists a sequence $\{a(2,i)\}\downarrow$ in T and an element z_2 of G such that (1) $\lim_i a(2,i)(x)=0$, (2) $z_2 = \lim_i a(2,i)(y_1) = \lim_i a(2,i)a(1,i)'(y)$, and (3) $r_1 - ||z_2|| < \epsilon_2$. Let $y_2 = \lim_i a(2,i)'(y_1) = \lim_i a(2,i)'a(1,i)'(y)$ and let $r_2 = \lim_{t\to 0+} r(t, x, y_2)$. Then $r_2 \le 2^{-2}$. Proceeding by induction, either there exists a smallest positive integer i such that $r_i = 0$ or $r_i > 0$ for each positive integer i. In the former case we let $h = y_i$ and $s = \sum_{j \le i} z_j$ while in the latter case we let $h = \lim_i y_i$ and $s = \sum z_i$ —of course, we must first show that each of $\lim_i y_i$ and $\sum z_i$ exists. Since $y_i = y - \sum_{j \le i} z_j$, it is sufficient to show that $\sum z_i$ exists and this is done as follows. Let $s_i = \sum_{j \le i} z_j$. If j > i, then $||s_j - s_i|| = ||\sum_{k \le j} z_k - \sum_{k \le i} z_k||$ = $||\sum_{i < k \le j} z_k|| \le \sum_{i < k \le j} ||z_k||| \le (\text{Lemma } 2.3.5)$ $\sum_{i < k \le j} r_{k-1} \le \sum_{i < k \le j} \frac{2^{-(k-1)}}{2^{-(k-1)}}$ $\langle 2^{-(i-1)}$ and hence, $\lim_i s_i = \sum z_i$ exists. By our construction, each $z_i \in G_s(x)$ and, by Lemma 2.3.3, $G_s(x, T)$ is a subgroup of G. Thus, $s \in G_s(x, T)$. In order to complete a proof of Theorem 2.3, it is sufficient to show that $h \in G_a(x, T)$. To this end, suppose $\epsilon > 0$ and $2^{-(i-1)} < \epsilon/2$. Then $||h - y_i||$ $= ||s-s_i|| \le 2^{-(i-1)} < \epsilon/2$ and $r_i = \lim_{t\to 0+} r(t, x, y_i) \le 2^{-i} < \epsilon/2$ which implies that there exists t>0 such that $r(t, x, y_i) < \epsilon/2$. If $a \in T$ and ||a(x)|| < t, then $||a(h)|| = ||a(h - y_i) + a(y_i)|| \le ||h - y_i|| + ||a(y_i)|| < \epsilon/2 + \epsilon/2 = \epsilon$. Therefore, $h \in G_a(x, T)$.

DEFINITION 2.6. The statement that a finite subset $[a_i; i \le n]$ of T is a finite partition of e in T means that $a_i a_j = 0$ if $i \ne j$ and $\sum_{i \le n} a_i = e$.

THEOREM 2.4. Suppose $x \in G$, $||x|| < \infty$, and $\epsilon > 0$. Then there exists a finite partition $P = [a_i; i \le n]$ of e in T such that if $a \in T$ and $i \le n$, then at least one of $||a a_i(x)||$ and $||a' a_i(x)|| < \epsilon$.

Proof. Suppose, on the contrary, that Theorem 2.4 is false. Then there exists a pair (x, ϵ) which contradicts Theorem 2.4: $||x|| < \infty$, $\epsilon > 0$, and if $[a_i; i \le n]$ is a finite partition of e in T then there exists an element a of T and a positive integer $i \le n$ such that each of $||a a_i(x)||$ and $||a' a_i(x)|| \ge \epsilon$. Moreover, since the pair (x, ϵ) contradicts Theorem 2.4, for each element a of T at least one of the pairs $(a(x), \epsilon)$ and $(a'(x), \epsilon)$ contradicts Theorem 2.4, i.e., if $P = [a_i; i \le m]$ works for a(x) (i.e., if $b \in T$ and $i \le m$ imply at least one of $||b a_i a(x)||$ and $||b' a_i a(x)|| < \epsilon$ and $Q = [b_j; j \le n]$ works for a'(x), then $R = [a_i a; i \le m] \cup [b_j a'; j \le n]$ works for x. Hence, there exists $a_1 \in T$ such that $(1) ||a_1(x)|| \ge \epsilon$ and (2) the pair $(a_i'(x), \epsilon)$ contradicts Theorem 2.4; \cdots ; there exists $a_{i+1} \in T$ such that $(1) ||a_{i+1} \prod_{j \le i} a_j'(x)|| \ge \epsilon$ and (2) the pair $(\prod_{j \le i+1} a_j'(x), \epsilon)$ contradicts Theorem 2.4. Let $b_i = \sum_{j \le i} a_j$. But, by Lemma 2.3.1, $\lim_i b_i'(x)$ exists and, hence, $\lim_i b_i(x)$ exists. This contradiction $(||x|| < \infty)$ establishes Theorem 2.4.

We shall apply Theorem 2.4 in §3. However, we shall first conclude this

section by giving four examples. Our first example sheds some light on the question: How strong an analytic condition is needed on an algebra U of endomorphisms on G in order to assure that Theorem 2.3 will hold (mod U)?

EXAMPLE 2.1. In this example, T will be an algebra of endomorphisms on G for which Theorem 2.3 does not hold; however, T will have the property that if $a, b \in T$, then $a \le b$ if and only if $||a(x)|| \le ||b(x)||$ for all $x \in G$.

Let S be an algebra of subsets of a set X, S contain an infinite number of elements, $G = [x; x \text{ is a real valued function on } X, ||x|| = \sup [|x(t)|; t \in X]]$, and $T = [P_E; P_E(x) = x \cdot C(E)$ where C(E)(t) = 1 if $t \in E$ and C(E)(t) = 0 if $t \in E$. Then there exist bounded elements x and y of G such that if each of h and s is an element of G, y = h + s, and h is absolutely continuous with respect to $x \pmod{T}$, then s is not singular with respect to $x \pmod{T}$.

Proof. Since S is infinite, there exists a sequence $\{E_i\}$ of non-null pairwise disjoint elements of S. Let y = C(X) and $x = \sum 2^{-i}C(E_i)$. Suppose y = h + s and $h \in G_a(x, T)$. Then there exists $\delta > 0$ such that if $E \in S$ and $||P_E(x)|| < \delta$, then $||P_E(h)|| < 2^{-1}$ and, hence, there exists a positive integer i such that

$$\left\|h \cdot C\left(\bigcup_{j>i} E_j\right)\right\| < 2^{-1}$$
. Thus, for all $j > i$, $\inf[s(t); t \in E_j] \ge 2^{-1}$

and, hence, s is not singular with respect to $x \pmod{T}$.

EXAMPLE 2.2. Let X, S, G, and T be defined as in Example 2.1 except that if $x \in G$, then $||x|| = (\sum_{t \in X} |x(t)|^Q)^{1/Q}$, where Q is a real number ≥ 1 . Then T is an admissible algebra of endomorphisms on G.

EXAMPLE 2.3. Let G be a Hilbert space, let $[E_{\lambda}; -\infty \leq \lambda \leq \infty]$ be a resolution of the identity, and let T be the algebra of projection operators generated by projections of the form $E_{\lambda+\mu}-E_{\lambda}$, $\mu \geq 0$. Then T is an admissible algebra of endomorphisms on G.

EXAMPLE 2.4. Let X, S, G, and T be defined as in Example 2.1 except that X is the set of positive integers, if $x \in G$, then $||x|| = |x(1)| + \sum_{i \ge 1} (|x(2i)|^i + |x(2i+1)|^i)^{1/i}$, and each one element subset [i] of X is an element of S. For each positive integer i we let $x_i = C([2i, 2i+1])$ and we let $a_i = P_{[2i]}$. Then $||x_i|| = 2^{1/i}$, $||a_i(x_i)|| = 1$ and $||a_i'(x_i)|| = 1$. Thus, in this example, while T is admissible, the ϵ we get in satisfying Property A depends not only on δ and ||x|| but also on x.

3. Spaces of finitely additive set functions. Throughout this section, X will denote a set, S will denote an algebra of subsets of X, G will denote the generalized complete normed abelian group of finitely additive set functions on S where the norm (||x||) of the elements x of G is the total variation (V(x, X)) of x on X, and T will denote the admissible algebra of projection operators induced by S, i.e., $T = [P_E; P_E(x)(F) = x(E \cap F)]$ for E, $F \in S$ and $x \in G$.

Let us recall that if S is an infinite set, then there exist unbounded finitely additive set functions x on S (i.e., elements x of G such that $||x|| = \infty$).

We shall extend the Lebesgue type decomposition for bounded and finitely additive set functions on a set algebra S which was presented in [2]. The definitions of absolute continuity and singularity which we use here are equivalent to those which were used in [2]. In order to make this paper self-contained with respect to notation and terminology, it is necessary to observe the following:

- (1) $||P_E(x)|| = V(x, E)$ for $E \in S$ and $x \in G$,
- $(2) P_{E}P_{F} = P_{E \cap F},$
- (3) $P_{E}' = P_{(E')}$, where E' = X E,
- (4) if $E \cap F = \theta$: $P_E P_F = 0$, then $||P_E(x) + P_F(x)|| = ||P_{E \cup F}(x)|| = ||P_E(x)|| + ||P_F(x)||$ for all $x \in G$, and
- (5) $P_E \leq P_F$ if and only if $E \subset F$. Our first extension is the following consequence of Theorem 2.3.

Theorem 3.1. If x is a finitely additive set function on S and y is a bounded and finitely additive set function on S, then there exists uniquely an element h of G and an element s of G such that

- (1) y = h + s,
- (2) h is absolutely continuous with respect to $x \pmod{T}$, and
- (3) s is singular with respect to $x \pmod{T}$.

THEOREM 3.2. If x is a bounded finitely additive set function on S and y is absolutely continuous with respect to $x \pmod{T}$, then y is bounded.

Proof. Since y is absolutely continuous with respect to $x \pmod{T}$, there exists $\delta > 0$ such that if $E \in S$ and $V(x, E) < \delta$, then V(y, E) < 1. By Theorem 2.4, there exists a finite partition $[P_{E_i}; i \leq n]$ of P_X in T such that if $E \in S$ and $i \leq n$, then at least one of $V(x, E \cap E_i)$ and $V(x, E' \cap E_i) < \delta$ and, hence, at least one of $V(y, E \cap E_i)$ and $V(y, E' \cap E_i) < 1$. For each positive integer $i \leq n$, $|y(E \cap E_i) - y(E_i)| = |y(E' \cap E_i)|$. Hence $|y(E \cap E_i)| < |y(E_i)| + 1$ for all $E \in S$. Thus, $V(y, E_i) \leq 2$ (sup $[|y(E \cap E_i)|; E \in S]$) $\leq 2(|y(E_i)| + 1) < \infty$ for $i \leq n$ and, hence, $||y|| = V(y, X) = \sum_{i \leq n} V(y, E_i) < \infty$.

In the general setting of $\S 2$, the analog of Theorem 3.2 is not, in general, true. For example, let S be infinite and let T' be the subalgebra of T which consists of 0 and e. Then any two nonzero elements of G are absolutely continuous with respect to each other (mod T'); but, there exist unbounded, as well as nonzero bounded, elements of G.

THEOREM 3.3. If each of x and y is a finitely additive set function on S and at least one of x and y is bounded, then y is decomposable with respect to x (mod T) if and only if there exists a sequence $\{E_i\} \downarrow$ in S such that $\lim_i V(x, E_i) = 0$ and $\lim_i V(y, E_i') < \infty$.

Proof. If $||y|| < \infty$ a decomposition exists; moreover, it is sufficient to let $E_i = \theta$ for $i \ge 1$. Suppose $||y|| = \infty$ and $||x|| < \infty$.

Necessity. Suppose y = h + s, $h \in G_a(x, T)$, and $s \in G_s(x, T)$. Then, by Theorem 3.3, $||h|| < \infty$ and, by the definition of singularity, there exists a sequence $\{F_i\}$ of elements of S such that $V(x, F_i) < 2^{-i}$ and $V(y, F_i') < 2^{-i}$. Let $E_i = \prod_{j \le i} F_j$. Then $\{E_i\} \downarrow$ in S, $V(x, E_i) < 2^{-i}$, and $V(y, E_i') = V(h, E_i') + V(s, E_i') \le V(h, X) + \sum_{j \le i} V(s, F_j') < ||h|| + 1 < \infty$.

Sufficiency. Let $y_i = P'_{E_i}(y)$. Then $||y_{i+j} - y_i|| = |V(y, E'_{i+j}) - V(y, E'_i)|$ = $V(y, E_i \cap E'_{i+j}) = ||y_{i+j}|| - ||y_i||$. Hence $z = \lim_i y_i$ exists and $||z|| < \infty$; moreover, $y - z \in G_s(x; T)$. By Theorem 3.1, there exist h and s_1 such that $z = h + s_1$, $h \in G_a(x, T)$, and $s_1 \in G_s(x, T)$. Finally, $s = y - h = (y - z) + s_1 \in G_s(x, T)$.

EXAMPLE 3.1. Let X be the set of positive integers and let S be the algebra of all subsets of X. Let $x \in G$ such that if $E \subset X$ and $E \neq \theta$, then $x(E) = \sum_{i \in B} 2^{-i}$. Let $y \in G$ such that y(X) = 0 and y([i]) = 1 for all $i \in X$. Then y is not decomposable with respect to $x \pmod{T}$.

EXAMPLE 3.2. Let X be the half open interval [0, 1). Let S be the algebra of subsets of X generated by elements of the form $E(m, n) = [m/2^n, (m+1)/2^n, 0 \le m < 2^n]$, i.e., $S = [\bigcup_{i \le k} E(m_i, n_i); 0 \le m_i < 2^{n_i}]$. We shall define y inductively as follows. Let y(X) = 1, y(E(2m, n+1)) = 2y(E(m, n)), and y(E(2m+1, n+1)) = -y(E(m, n)). Then y is unbounded on each nonempty element of S. Hence y is decomposable with respect to no bounded finitely additive set function on S except the constant function S; but, every finitely additive set function on S is absolutely continuous with respect to S. Cameron (cf. S1) has shown that a complex Wiener measure is unbounded on every nonempty set of the algebra on which it is defined.

COROLLARY 3.3.1. If y is an unbounded finitely additive set function on S (i.e., $y \in G$ and $||y|| = \infty$), then there exists a bounded finitely additive set function x on S such that y is not decomposable with respect to x.

Proof. Let $K = [E \in S; V(y, E) < \infty]$. Then K is a proper ideal in S. There exists a maximal proper ideal J in S such that $K \subset J$. There exists, uniquely, $x \in G$ such that x(E) = 0 if $E \in J$ and x(E) = 1 if $E \notin J$. It is impossible to decompose y with respect to x: if V(x, E) < 1, then $E' \notin K$ and, hence, $V(y, E') = \infty$.

THEOREM 3.4. Suppose S is a sigma algebra, y is a countably additive set function on S, and x is a finitely additive set function on S. Then y is $(\epsilon - \delta)$ absolutely continuous with respect to x (mod T) if and only if y is 0 - 0 absolutely continuous with respect to x, i.e., if and only if $E \in S$ and V(x, E) = 0 imply V(y, E) = 0.

Proof. Sufficiency. Suppose $y \notin G_a(x, T)$. Then $\lim_{t\to 0+} r(t, x, y) > 0$, and, by Lemma 3.2, there exists a sequence $\{E_i\} \downarrow$ in S such that $\lim_i V(x, E_i) = 0$

and $\lim_{i} V(y, E_i) > 0$. Since S is a sigma algebra, $E = \bigcap E_i \in S$; moreover, $V(x, E) \leq \lim_{i} V(x, E_i) = 0$. Finally, since y is countably additive on S, $V(y, E) = \lim_{i} V(y, E_i) > 0$.

BIBLIOGRAPHY

- 1. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. and Phys. 39 (1960), 126-140.
- 2. R. B. Darst, A decomposition of finitely additive set functions, J. Math. Reine Angew. 210 (1962), 31-37.

Massachusetts Institute of Technology, Cambridge, Massachusetts

ERRATA TO VOLUME 98

C. C. Elgot. Decision problems of finite automata design and related arithmetics Page 23, Lines 10, 11. Replace each \hat{f} by \hat{p} .

Page 23, 3.6(b), Line 2. The words "by a finite number . . . " should start a new line.

Page 24, Line 9 (second display formula). Replace "(a, b)" by "(b, a)". Page 46, 8.6.2, Line 5. Replace "let n be the maximum" by "let n be one more than the maximum".

Line 7. Replace "for some n-ary R" by "for some R which is n-ary".

The third sentence (beginning on the sixth line) of §8.6.2 on page 46 is in error but is readily correctable. "It may be seen that $T_{m+m'+r}^{\infty}(\Lambda_x M) = S_1 \cup S_2 \cup \cdots \cup S_k$, where S_j , $j=1, 2, \cdots$, k, is the set of all infinite R_j -sequences f such that $(f \upharpoonright n) \in E_j$, for appropriate R_j , E_j , and that k need not be 1. For example, let M be

$$0 \in F_1 \land 0 \notin F_2 \land (x \in F_1 \land x \notin F_2 \cdot \lor \cdot x \in F_1 \land x \in F_2) : \lor :$$

$$0 \notin F_1 \land 0 \in F_2 \land (x \in F_1 \land x \in F_2 \cdot \lor \cdot x \notin F_1 \land x \in F_2).$$

Then $T_2^{\infty}(\Lambda_x M)$ is the union of the set of all infinite sequences in $\langle 1, 0 \rangle$ and $\langle 1, 1 \rangle$ which begin with $\langle 1, 0 \rangle$ and the set of all infinite sequences in $\langle 0, 1 \rangle$ and $\langle 1, 1 \rangle$ which begin with $\langle 0, 1 \rangle$. Thus, in this case, k = 2. Let Q be

 $(0 \in F_1 \land 0 \notin F_2 \cdot \lor \cdot 0 \notin F_1 \land 0 \in F_2)$

$$: \wedge : (x \in F_1 \land x \notin F_2 \land x \in F_3 \land x' \in F_3 \land x' \in F_3 \land x \in F_1 \land x \in F_2 \land x \in F_3 \land x' \in F_3$$

 $\cdot \vee \cdot x \in F_1 \wedge x \in F_2 \wedge x \notin F_3 \wedge x' \notin F_3 \cdot \vee \cdot x \notin F_1 \wedge x \in F_2 \wedge x \notin F_3 \wedge x' \notin F_3).$

Then $\Lambda_x M \equiv \bigvee_{F_3} \Lambda_x Q$ and $T_3^{\infty} \Lambda_x Q$ is a set of *R*-sequences, for the binary *R* indicated by the formula, beginning in a designated way and $T_2^{\infty}(\Lambda_x M)$ is a projection of $T_3^{\infty}(\Lambda_x Q)$. Quite generally it is the case that $S_1 \cup S_2 \cup \cdots \cup S_k$ is the projection of a set of *R*-sequences beginning in a designated way so